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We describe an efficient synthesis of H type 1 and 2 trisac-
charides by one-pot glycosylation involving glycosidation of
glycal epoxide.

Oligosaccharides play important roles in biological process-
es on cell surface and have served as important tumor markers.
�-Galactoside 1 attached with �-fucoside at the C2 position
(H-disaccharide) is often found in biologically active oligosac-
charides such as H type 1 and 2 epitopes (1a) and (1b), and is
known to be an appropriate tumor antigen (Scheme 1).1 In order
to develop chemical probes based on the structure of the H-dis-
accharide, an effective methodology for the synthesis of glyco-
conjugates containing the H-disaccharide is required.2

One-pot sequential glycosylation to form two and more gly-
cosidic bonds, is an effective approach for the liquid-phase
oligosaccharide synthesis.3 This approach involves sequential
chemo- and regio-selective glycosylations without any protect-
ing group manipulations and purification of each intermediate.
In the one-pot glycosylation, reagents and resulting products
should not interfere any following glycosylations. We have in-
vestigated one-pot glycosylation based on the chemoselective
activation of various glycosyl donors with an appropriate activa-
tor, and recently reported the synthesis of a protected linear and
branched trisaccharide libraries by the one-pot glycosylation
method.4 Most of synthetic strategies are based on the in situ
synthesis of oligosaccharides with a leaving group. Therefore,
the synthesis of the trisaccharides 1 based on the one-pot glyco-
sylation strategy requires the glycosidation of glycosyl donor at-
tached with saccharide at the C2 position to from 1,2-trans-gly-
cosidic bonds. However, the absence of the participating sub-
stituents of the glycosyl donors at the C2 position makes it dif-
ficult to stereoselectively form the 1,2-trans-glycosidic bond.
Therefore, an effective one-pot glycosylation method for the

synthesis of various C2 glycosylated oligosaccharides is re-
quired. Herein we report the one-pot synthesis of H Type 1
and 2 trisaccharide units using a glycal epoxide.

Our strategy for the one-pot synthesis of H Type 1 and 2 tri-
saccharide units 1 is based on the preparing glycosyl acceptors 5
by glycosylation of acceptor 3 with glycal epoxide 2. The glycal
epoxides are known to undergo stereoselective glycosidation to
provide glycosides 5 bearing a hydroxy group at the C2 position
linked through a 1,2-trans-glycosidic bond.5 Subsequent glyco-
sylation of the hydroxy group with glycosyl donor 4 would pro-
vide the protected H Type 1 and 2 trisaccharides 1.

We first conducted the one-pot synthesis of H type 1 trisac-
charide 9aA bearing a primary amino group using the three
building blocks 2, 3a, and 4A (Scheme 2). Our initial investiga-
tion involves the stepwise synthesis of the protected trisacchar-
ide 7aA as shown in Scheme 2. Treatment of glucosamine 3a
with 1.2 equiv. of the glycal epoxide 2 in the presence of ZnCl2
in CH2Cl2 provided the desired disaccharide 6 in 74% yield with
complete �-selectivity. Use of TMSOTf as an activator resulted
in a significant amount of silylated products. Fucosylation of the
resulting disaccharide 6 with thiofucoside 4A smoothly proceed-
ed in stereoselective manner to provide �-fucoside 7aA in good
yield with complete �-selectivity.
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Next, we examined one-pot glycosylation using 2, 3a, and
4A. To glucosamine 3a was added 1.2 equiv. of the glycal epox-
ide 2 and 2.5 equiv. of ZnCl2 at �78 �C. The reaction mixture
was stirred at 0 �C for 2 h. Subsequently, 2.5 equiv. of thiofuco-
side 4A, 3.0 equiv. of NIS, and a catalytic amount of TfOH at
0 �C were added to the reaction mixture. After stirring at the
same temperature for 2 h, the reaction mixture was quenched.
After removal of the solvent, the residue was purified by silica
gel chromatography and gel permeable chromatography to pro-
vide trisaccharide 7aA in 46% yield based on 3a. The analytical
data of trisaccharide 7aA, synthesized by one-pot glycosylation
were identical with those of trisaccharide 7aA by the stepwise
synthesis.

Deprotection of the protected trisaccharide 7aA was inves-
tigated. Treatment of 7aA with NH2NH2

.H2O in EtOH at reflux
for 18 h, followed by acetylation of the amine provided acet-
amide 8aA in 70% yield. Hydrogenolysis of both benzyl ethers
and an azido group with H2 in the presence of Pd/C provided the
H type 1 trisaccharide 9aA bearing with an amino alkyl chain at
the reducing end in quantitative yield.

In order to demonstrate the feasibility of the method, we
planned the combinatorial synthesis of a small oligosaccharide
library 7aA-cB based on the structure of H type 1 and 2 trisac-
charide by one-pot glycosylation. (Figure 1 and Scheme 3).
Six building blocks 2, 3a–3c, and 4A–4B were designed for

the library synthesis.
The parallel synthesis of the 6 oligosaccharides 7 by one-pot

glycosylation was performed utilizing Carusel�, which controls
the reaction temperature and the stirring rate in 10 reaction ves-
sels. The six reaction vessels were set up with activated MS-4 �A.
Each acceptor 3a–3c was added to the two reaction vessels, re-
spectively and the reaction vessels were cooled to �78 �C. The
glycal epoxide 2 (1.2 equiv.) and ZnCl2 (2.5 equiv.) were added
to all the vessels at �78 �C. The reaction mixtures were warmed
to �20 �C and stirred for 2 h at the same temperature. Subse-
quently, 2.5 equiv. of thiofucoside 4A (2.5 equiv.) or thiortham-
noside 4B (2.5 equiv.), NIS (3.0 equiv.), and a catalytic amount
of TfOH at 0 �C were added to the reaction mixture. After stir-
ring for 2 h at the same temperature, the reaction mixture was
quenched with NEt3. The residues were purified by silica gel
chromatography, followed by gel permeable chromatography
to provide trisaccharide 7aA-bC in moderate yields (42–60%
yields) based on 3.

In conclusion, we have demonstrated one-pot synthesis of H
type 1 and 2 trisaccharides 7 using the glycal epoxide 2. The gly-
cosydation of glycal epoxide 2with ZnCl2 provided disaccharide
possessing the hydroxy-free C2. The secondary hydroxy group
subsequent undergo glycosylation to provide trisaccharide in
good yield in one-pot. The one-pot sequential glycosylation
should be useful to prepare oligosaccharides containing the
H-disaccharide moiety.
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